Quadratic Eigenvalue Problem - Methods of Solution

Methods of Solution

Direct methods for solving the standard or generalized eigenvalue problems and are based on transforming the problem to Schur or Generalized Schur form. However, there is no analogous form for quadratic matrix polynomials. One approach is to transform the quadratic matrix polynomial to a linear matrix pencil, and solve a generalized eigenvalue problem. Once eigenvalues and eigenvectors of the linear problem have been determined, eigenvectors and eigenvalues of the quadratic can be determined.

The most common linearization is the first companion linearization


L(\lambda) =
\lambda
\begin{bmatrix}
M & 0 \\
0 & I_n
\end{bmatrix}
+
\begin{bmatrix}
C & K \\
-I_n & 0
\end{bmatrix},

where is the -by- identity matrix, with corresponding eigenvector


z =
\begin{bmatrix}
\lambda x \\
x
\end{bmatrix}.

We solve for and, for example by computing the Generalized Schur form. We can then take the first components of as the eigenvector of the original quadratic .

Read more about this topic:  Quadratic Eigenvalue Problem

Famous quotes containing the words methods of, methods and/or solution:

    If you want to know the taste of a pear, you must change the pear by eating it yourself.... If you want to know the theory and methods of revolution, you must take part in revolution. All genuine knowledge originates in direct experience.
    Mao Zedong (1893–1976)

    All good conversation, manners, and action, come from a spontaneity which forgets usages, and makes the moment great. Nature hates calculators; her methods are saltatory and impulsive.
    Ralph Waldo Emerson (1803–1882)

    There is a lot of talk now about metal detectors and gun control. Both are good things. But they are no more a solution than forks and spoons are a solution to world hunger.
    Anna Quindlen (b. 1953)