Quadratic Classifier - Quadratic Discriminant Analysis

Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) is closely related to linear discriminant analysis (LDA), where it is assumed that the measurements from each class are normally distributed. Unlike LDA however, in QDA there is no assumption that the covariance of each of the classes is identical. When the normality assumption is true, the best possible test for the hypothesis that a given measurement is from a given class is the likelihood ratio test. Suppose there are only two groups, (so ), and the means of each class are defined to be and the covariances are defined as . Then the likelihood ratio will be given by

Likelihood ratio =

for some threshold t. After some rearrangement, it can be shown that the resulting separating surface between the classes is a quadratic. The sample estimates of the mean vector and variance-covariance matrices will substitute the population quantities in this formula.

Read more about this topic:  Quadratic Classifier

Famous quotes containing the word analysis:

    Whatever else American thinkers do, they psychologize, often brilliantly. The trouble is that psychology only takes us so far. The new interest in families has its merits, but it will have done us all a disservice if it turns us away from public issues to private matters. A vision of things that has no room for the inner life is bankrupt, but a psychology without social analysis or politics is both powerless and very lonely.
    Joseph Featherstone (20th century)