QR Decomposition - Using For Solution To Linear Inverse Problems

Using For Solution To Linear Inverse Problems

Compared to the direct matrix inverse, inverse solutions using QR decomposition are more numerically stable as evidenced by their reduced condition numbers .

To solve the underdetermined linear problem where the matrix A has dimensions and rank, first find the QR factorization of the transpose of A:, where Q is an orthogonal matrix (i.e. ), and R has a special form: . Here is a square right triangular matrix, and the zero matrix has dimension . After some algebra, it can be shown that the solution to the inverse problem can be expressed as: 
x = Q
\begin{bmatrix} (R_1^T)^{-1}b \\ 0 \end{bmatrix}
where is found by Gaussian elimination.

To find a solution to the overdetermined problem which minimizes the norm, first find the QR factorization of A: . The solution can then be expressed as, where and are the same as before, but now is a projection matrix that maps a vector in into .

Read more about this topic:  QR Decomposition

Famous quotes containing the words solution, inverse and/or problems:

    Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.
    Jane Rule (b. 1931)

    The quality of moral behaviour varies in inverse ratio to the number of human beings involved.
    Aldous Huxley (1894–1963)

    The problems of this world are only truly solved in two ways: by extinction or duplication.
    Susan Sontag (b. 1933)