Pulse-width Modulation - Principle

Principle

Pulse-width modulation uses a rectangular pulse wave whose pulse width is modulated resulting in the variation of the average value of the waveform. If we consider a pulse waveform with a low value, a high value and a duty cycle D (see figure 1), the average value of the waveform is given by:


\bar y=\frac{1}{T}\int^T_0f(t)\,dt.

As is a pulse wave, its value is for and for . The above expression then becomes:


\begin{align}
\bar y &=\frac{1}{T}\left(\int_0^{DT}y_{max}\,dt+\int_{DT}^T y_{min}\,dt\right)\\
&= \frac{D\cdot T\cdot y_{max}+ T\left(1-D\right)y_{min}}{T}\\
&= D\cdot y_{max}+ \left(1-D\right)y_{min}.
\end{align}

This latter expression can be fairly simplified in many cases where as . From this, it is obvious that the average value of the signal is directly dependent on the duty cycle D.

The simplest way to generate a PWM signal is the intersective method, which requires only a sawtooth or a triangle waveform (easily generated using a simple oscillator) and a comparator. When the value of the reference signal (the red sine wave in figure 2) is more than the modulation waveform (blue), the PWM signal (magenta) is in the high state, otherwise it is in the low state.

Read more about this topic:  Pulse-width Modulation

Famous quotes containing the word principle:

    What is an atheist, but one who does not, or will not, see in the universe a ruling principle of love; and what a misanthrope, but one who does not, or will not, see in man a ruling principle of kindness?
    Herman Melville (1819–1891)

    Experimental work provides the strongest evidence for scientific realism. This is not because we test hypotheses about entities. It is because entities that in principle cannot be ‘observed’ are manipulated to produce a new phenomena
    [sic] and to investigate other aspects of nature.
    Ian Hacking (b. 1936)

    The principle goal of education in the schools should be creating men and women who are capable of doing new things, not simply repeating what other generations have done; men and women who are creative, inventive and discoverers, who can be critical and verify, and not accept, everything they are offered.
    Jean Piaget (1896–1980)