Pulmonary Hypertension - Pathogenesis

Pathogenesis

Whatever the initial cause, pulmonary arterial hypertension (WHO Group I) involves the vasoconstriction or tightening of blood vessels connected to and within the lungs. This makes it harder for the heart to pump blood through the lungs, much as it is harder to make water flow through a narrow pipe as opposed to a wide one. Over time, the affected blood vessels become both stiffer and thicker, in a process known as fibrosis. This further increases the blood pressure within the lungs and impairs their blood flow. In addition, the increased workload of the heart causes hypertrophy of the right ventricle, making the heart less able to pump blood through the lungs, ultimately causing right heart failure (a condition known as cor pulmonale). As the blood flowing through the lungs decreases, the left side of the heart receives less blood. This blood may also carry less oxygen than normal. Therefore it becomes harder and harder for the left side of the heart to pump to supply sufficient oxygen to the rest of the body, especially during physical activity.

Pathogenesis in pulmonary venous hypertension (WHO Group II) is completely different. There is no obstruction to blood flow in the lungs. Instead, the left heart fails to pump blood efficiently, leading to pooling of blood in the lungs. This causes pulmonary edema and pleural effusions.

In hypoxic pulmonary hypertension (WHO Group III), the low levels of oxygen are thought to cause vasoconstriction or tightening of pulmonary arteries. This leads to a similar pathophysiology as pulmonary arterial hypertension.

In chronic thromboembolic pulmonary hypertension (WHO Group IV), the blood vessels are blocked or narrowed with blood clots. Again, this leads to a similar pathophysiology as pulmonary arterial hypertension.

Read more about this topic:  Pulmonary Hypertension