In mathematics and theoretical physics, a pseudo-Euclidean space is a finite-dimensional real n-space together with a non-degenerate indefinite quadratic form, called the magnitude of a vector. Such a quadratic form can, after a suitable change of coordinates, be written as
where x = (x1, …, xn), n is the dimension of the space, and 1 ≤ k < n. For true Euclidean spaces, k = n, implying that the quadratic form is positive-definite rather than indefinite. Otherwise q is an isotropic quadratic form. In a pseudo-Euclidean space, unlike in a Euclidean space, there exist non-zero vectors with zero magnitude, and also vectors with negative magnitude.
As with the term Euclidean space, pseudo-Euclidean space may refer to either an affine space or a vector space (see point–vector distinction) over real numbers.
Read more about Pseudo-Euclidean Space: Geometry, Examples, See Also
Famous quotes containing the word space:
“Here were poor streets where faded gentility essayed with scanty space and shipwrecked means to make its last feeble stand, but tax-gatherer and creditor came there as elsewhere, and the poverty that yet faintly struggled was hardly less squalid and manifest than that which had long ago submitted and given up the game.”
—Charles Dickens (18121870)