Prosthesis - Robotic Prostheses

Robotic Prostheses

Further information: Robotics#Touch

In order for a robotic prosthetic limb to work, it must have several components to integrate it into the body's function: Biosensors detect signals from the user's nervous or muscular systems. It then relays this information to a controller located inside the device, and processes feedback from the limb and actuator (e.g., position, force) and sends it to the controller. Examples include wires that detect electrical activity on the skin, needle electrodes implanted in muscle, or solid-state electrode arrays with nerves growing through them. One type of these biosensors are employed in myoelectric prosthesis.

Mechanical sensors process aspects affecting the device (e.g., limb position, applied force, load) and relay this information to the biosensor or controller. Examples include force meters and accelerometers.

The controller is connected to the user's nerve and muscular systems and the device itself. It sends intention commands from the user to the actuators of the device, and interprets feedback from the mechanical and biosensors to the user. The controller is also responsible for the monitoring and control of the movements of the device.

An actuator mimics the actions of a muscle in producing force and movement. Examples include a motor that aids or replaces original muscle tissue.

Read more about this topic:  Prosthesis