Propositional Calculus - Example 1. Simple Axiom System

Example 1. Simple Axiom System

Let, where, are defined as follows:

  • The alpha set, is a finite set of symbols that is large enough to supply the needs of a given discussion, for example:
  • Of the three connectives for conjunction, disjunction, and implication (, and ), one can be taken as primitive and the other two can be defined in terms of it and negation . Indeed, all of the logical connectives can be defined in terms of a sole sufficient operator. The biconditional can of course be defined in terms of conjunction and implication, with defined as .
    Adopting negation and implication as the two primitive operations of a propositional calculus is tantamount to having the omega set partition as follows:
  • An axiom system discovered by Jan Ɓukasiewicz formulates a propositional calculus in this language as follows. The axioms are all substitution instances of:
  • The rule of inference is modus ponens (i.e., from and, infer ). Then is defined as, and is defined as .

Read more about this topic:  Propositional Calculus

Famous quotes containing the words simple, axiom and/or system:

    The Cairo conference ... is about a complicated web of education and employment, consumption and poverty, development and health care. It is also about whether governments will follow where women have so clearly led them, toward safe, simple and reliable choices in family planning. While Cairo crackles with conflict, in the homes of the world the orthodoxies have been duly heard, and roundly ignored.
    Anna Quindlen (b. 1952)

    It is an axiom in political science that unless a people are educated and enlightened it is idle to expect the continuance of civil liberty or the capacity for self-government.
    Texas Declaration of Independence (March 2, 1836)

    [Madness] is the jail we could all end up in. And we know it. And watch our step. For a lifetime. We behave. A fantastic and entire system of social control, by the threat of example as effective over the general population as detention centers in dictatorships, the image of the madhouse floats through every mind for the course of its lifetime.
    Kate Millett (b. 1934)