Example 1. Simple Axiom System
Let, where, are defined as follows:
- The alpha set, is a finite set of symbols that is large enough to supply the needs of a given discussion, for example:
- Of the three connectives for conjunction, disjunction, and implication (, and ), one can be taken as primitive and the other two can be defined in terms of it and negation . Indeed, all of the logical connectives can be defined in terms of a sole sufficient operator. The biconditional can of course be defined in terms of conjunction and implication, with defined as .
Adopting negation and implication as the two primitive operations of a propositional calculus is tantamount to having the omega set partition as follows:
- An axiom system discovered by Jan Ćukasiewicz formulates a propositional calculus in this language as follows. The axioms are all substitution instances of:
- The rule of inference is modus ponens (i.e., from and, infer ). Then is defined as, and is defined as .
Read more about this topic: Propositional Calculus
Famous quotes containing the words simple, axiom and/or system:
“... it is always the simple that produces the marvelous.”
—Amelia E. Barr (18311919)
“The writer who neglects punctuation, or mispunctuates, is liable to be misunderstood.... For the want of merely a comma, it often occurs that an axiom appears a paradox, or that a sarcasm is converted into a sermonoid.”
—Edgar Allan Poe (18091845)
“Television is an excellent system when one has nothing to lose, as is the case with a nomadic and rootless country like the United States, but in Europe the affect of television is that of a bulldozer which reduces culture to the lowest possible denominator.”
—Marc Fumaroli (b. 1932)
Related Subjects
Related Phrases
Related Words