Propositional Calculus - Example 1. Simple Axiom System

Example 1. Simple Axiom System

Let, where, are defined as follows:

  • The alpha set, is a finite set of symbols that is large enough to supply the needs of a given discussion, for example:
  • Of the three connectives for conjunction, disjunction, and implication (, and ), one can be taken as primitive and the other two can be defined in terms of it and negation . Indeed, all of the logical connectives can be defined in terms of a sole sufficient operator. The biconditional can of course be defined in terms of conjunction and implication, with defined as .
    Adopting negation and implication as the two primitive operations of a propositional calculus is tantamount to having the omega set partition as follows:
  • An axiom system discovered by Jan Ɓukasiewicz formulates a propositional calculus in this language as follows. The axioms are all substitution instances of:
  • The rule of inference is modus ponens (i.e., from and, infer ). Then is defined as, and is defined as .

Read more about this topic:  Propositional Calculus

Famous quotes containing the words simple, axiom and/or system:

    ... it is always the simple that produces the marvelous.
    Amelia E. Barr (1831–1919)

    The writer who neglects punctuation, or mispunctuates, is liable to be misunderstood.... For the want of merely a comma, it often occurs that an axiom appears a paradox, or that a sarcasm is converted into a sermonoid.
    Edgar Allan Poe (1809–1845)

    Television is an excellent system when one has nothing to lose, as is the case with a nomadic and rootless country like the United States, but in Europe the affect of television is that of a bulldozer which reduces culture to the lowest possible denominator.
    Marc Fumaroli (b. 1932)