Proper Morphism - Definition

Definition

A morphism f : XY of algebraic varieties or more generally of schemes, is called universally closed if for all morphisms ZY, the projections for the fiber product

are closed maps of the underlying topological spaces. A morphism f : XY of algebraic varieties is called proper if it is separated and universally closed. A morphism of schemes is called proper if it is separated, of finite type and universally closed ( II, 5.4.1 ). One also says that X is proper over Y. A variety X over a field k is complete when the structural morphism from X to the spectrum of k is proper.

Read more about this topic:  Proper Morphism

Famous quotes containing the word definition:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)