Zagier's "one-sentence Proof"
If p = 4k + 1 is prime, then the set S = {(x, y, z) ∈ N3: x2 + 4yz = p} is finite and has two involutions: an obvious one (x, y, z) → (x, z, y), whose fixed points correspond to representations of p as a sum of two squares, and a more complicated one,
which has exactly one fixed point, (1, 1, k); however, the number of fixed points of an involution of a finite set S has the same parity as the cardinality of S, so this number is odd for the first involution as well, proving that p is a sum of two squares.
This proof, due to Zagier, is a simplification of an earlier proof by Heath-Brown, which in turn was inspired by a proof of Liouville. The technique of the proof is a combinatorial analogue of the topological principle that the Euler characteristics of a topological space with an involution and of its fixed point set have the same parity and is reminiscent of the use of sign-reversing involutions in the proofs of combinatorial bijections.
Read more about this topic: Proofs Of Fermat's Theorem On Sums Of Two Squares
Famous quotes containing the word proof:
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)