Proofs of Fermat's Little Theorem - Proof Using Group Theory

Proof Using Group Theory

This proof requires the most basic elements of group theory.

The idea is to recognise that the set G = {1, 2, …, p − 1}, with the operation of multiplication (taken modulo p), forms a group. The only group axiom that requires some effort to verify is that each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the range 1 ≤ ap − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest positive integer such that

By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive integer m. Then

Read more about this topic:  Proofs Of Fermat's Little Theorem

Famous quotes containing the words proof, group and/or theory:

    Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other two—a proof of the decline of that country.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.
    Mary Barnett Gilson (1877–?)

    Could Shakespeare give a theory of Shakespeare?
    Ralph Waldo Emerson (1803–1882)