Proof Using Group Theory
This proof requires the most basic elements of group theory.
The idea is to recognise that the set G = {1, 2, …, p − 1}, with the operation of multiplication (taken modulo p), forms a group. The only group axiom that requires some effort to verify is that each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the range 1 ≤ a ≤ p − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest positive integer such that
By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive integer m. Then
Read more about this topic: Proofs Of Fermat's Little Theorem
Famous quotes containing the words proof, group and/or theory:
“A short letter to a distant friend is, in my opinion, an insult like that of a slight bow or cursory salutationa proof of unwillingness to do much, even where there is a necessity of doing something.”
—Samuel Johnson (17091784)
“The boys think they can all be athletes, and the girls think they can all be singers. Thats the way to fame and success. ...as a group blacks must give up their illusions.”
—Kristin Hunter (b. 1931)
“The theory [before the twentieth century] ... was that all the jobs in the world belonged by right to men, and that only men were by nature entitled to wages. If a woman earned money, outside domestic service, it was because some misfortune had deprived her of masculine protection.”
—Rheta Childe Dorr (18661948)