Proofs of Fermat's Little Theorem - Proof Using Group Theory

Proof Using Group Theory

This proof requires the most basic elements of group theory.

The idea is to recognise that the set G = {1, 2, …, p − 1}, with the operation of multiplication (taken modulo p), forms a group. The only group axiom that requires some effort to verify is that each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the range 1 ≤ ap − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest positive integer such that

By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive integer m. Then

Read more about this topic:  Proofs Of Fermat's Little Theorem

Famous quotes containing the words proof, group and/or theory:

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)

    around our group I could hear the wilderness listen.
    William Stafford (1914–1941)

    The theory seems to be that so long as a man is a failure he is one of God’s chillun, but that as soon as he has any luck he owes it to the Devil.
    —H.L. (Henry Lewis)