Proofs of Fermat's Little Theorem - Proof Using Group Theory

Proof Using Group Theory

This proof requires the most basic elements of group theory.

The idea is to recognise that the set G = {1, 2, …, p − 1}, with the operation of multiplication (taken modulo p), forms a group. The only group axiom that requires some effort to verify is that each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the range 1 ≤ ap − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest positive integer such that

By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive integer m. Then

Read more about this topic:  Proofs Of Fermat's Little Theorem

Famous quotes containing the words proof, group and/or theory:

    If any doubt has arisen as to me, my country [Virginia] will have my political creed in the form of a “Declaration &c.” which I was lately directed to draw. This will give decisive proof that my own sentiment concurred with the vote they instructed us to give.
    Thomas Jefferson (1743–1826)

    Instead of seeing society as a collection of clearly defined “interest groups,” society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.
    Diana Crane (b. 1933)

    every subjective phenomenon is essentially connected with a single point of view, and it seems inevitable that an objective, physical theory will abandon that point of view.
    Thomas Nagel (b. 1938)