Proof By Counting Necklaces
This is perhaps the simplest known proof, requiring the least mathematical background. It is an attractive example of a combinatorial proof (a proof that involves counting a collection of objects in two different ways).
The proof given here is an adaptation of Golomb's proof.
To keep things simple, let us assume that a is a positive integer. Consider all the possible strings of p symbols, using an alphabet with a different symbols. The total number of such strings is a p, since there are a possibilities for each of p positions (see rule of product).
For example, if p = 5 and a = 2, then we can use an alphabet with two symbols (say A and B), and there are 25 = 32 strings of length five:
- AAAAA, AAAAB, AAABA, AAABB, AABAA, AABAB, AABBA, AABBB,
- ABAAA, ABAAB, ABABA, ABABB, ABBAA, ABBAB, ABBBA, ABBBB,
- BAAAA, BAAAB, BAABA, BAABB, BABAA, BABAB, BABBA, BABBB,
- BBAAA, BBAAB, BBABA, BBABB, BBBAA, BBBAB, BBBBA, BBBBB.
We will argue below that if we remove the strings consisting of a single symbol from the list (in our example, AAAAA and BBBBB), the remaining a p − a strings can be arranged into groups, each group containing exactly p strings. It follows that a p − a is divisible by p.
Read more about this topic: Proofs Of Fermat's Little Theorem
Famous quotes containing the words proof and/or counting:
“When children feel good about themselves, its like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.”
—Stephanie Martson (20th century)
“If all power is in the people, if there is no higher law than their will, and if by counting their votes, their will may be ascertainedthen the people may entrust all their power to anyone, and the power of the pretender and the usurper is then legitimate. It is not to be challenged since it came originally from the sovereign people.”
—Walter Lippmann (18891974)