The Existence of Transcendental Numbers
There exists at least one number for which it is impossible to find any algebraic equation that this number satisfies (i.e. you plug the number into the equation wherever X occurs and the equation equals zero). Stated another way: There exists at least one number which does not satisfy any equations of the form called an algebraic equation:
where are integers, not all zero. Numbers that do not satisfy any equation of this form are called transcendental numbers.
"It is not immediately obvious that there are any transcendental numbers, though actually, as we shall see in a moment, almost all real numbers are transcendental" (Hardy and Wright, p. 160)
Hardy and Wright (p. 160) offer theorems to show that:
- The aggregate of algebraic numbers is enumerable.
- Almost all real numbers are transcendental.
- A real algebraic number of degree n is not approximable to any order greater than n (Liouville's theorem)
This last theorem "enables us to produce as many examples of transcendental numbers as we please" (Hardy and Wright p. 161).
Hardy and Wright go on to prove that pi and the "exponential" e are transcendental. Hermite offered the first proof that e is transcendental (cf Notes in Hardy and Wright p. 177).
In a footnote p. 190 Hardy and Wright discuss the diagonal method of Cantor that demonstrates the existence of transcendental numbers.
Read more about this topic: Proof Of Impossibility
Famous quotes containing the words existence and/or numbers:
“As for types like my own, obscurely motivated by the conviction that our existence was worthless if we didnt make a turning point of it, we were assigned to the humanities, to poetry, philosophy, paintingthe nursery games of humankind, which had to be left behind when the age of science began. The humanities would be called upon to choose a wallpaper for the crypt, as the end drew near.”
—Saul Bellow (b. 1915)
“I had a feeling that out there, there were very poor people who didnt have enough to eat. But they wore wonderfully colored rags and did musical numbers up and down the streets together.”
—Jill Robinson (b. 1936)