Projection (linear Algebra) - Projections On Normed Vector Spaces

Projections On Normed Vector Spaces

When the underlying vector space X is a (not necessarily finite-dimensional) normed vector space, analytic questions, irrelevant in the finite-dimensional case, need to be considered. Assume now X is a Banach space.

Many of the algebraic notions discussed above survive the passage to this context. A given direct sum decomposition of X into complementary subspaces still specifies a projection, and vice versa. If X is the direct sum X = UV, then the operator defined by P(u + v) = u is still a projection with range U and kernel V. It is also clear that P2 = P. Conversely, if P is projection on X, i.e. P2 = P, then it is easily verified that (IP)2 = (IP). In other words, (IP) is also a projection. The relation I = P + (IP) implies X is the direct sum Ran(P) ⊕ Ran(IP).

However, in contrast to the finite-dimensional case, projections need not be continuous in general. If a subspace U of X is not closed in the norm topology, then projection onto U is not continuous. In other words, the range of a continuous projection P must be a closed subspace. Furthermore, the kernel of a continuous projection (in fact, a continuous linear operator in general) is closed. Thus a continuous projection P gives a decomposition of X into two complementary closed subspaces: X = Ran(P) ⊕ Ker(P) = Ran(P) ⊕ Ran(IP).

The converse holds also, with an additional assumption. Suppose U is a closed subspace of X. If there exists a closed subspace V such that X = UV, then the projection P with range U and kernel V is continuous. This follows from the closed graph theorem. Suppose xnx and Pxny. One needs to show Px = y. Since U is closed and {Pxn} ⊂ U, y lies in U, i.e. Py = y. Also, xnPxn = (IP)xnxy. Because V is closed and {(IP)xn} ⊂ V, we have xyV, i.e. P(xy) = PxPy = Pxy = 0, which proves the claim.

The above argument makes use of the assumption that both U and V are closed. In general, given a closed subspace U, there need not exist a complementary closed subspace V, although for Hilbert spaces this can always be done by taking the orthogonal complement. For Banach spaces, a one-dimensional subspace always has a closed complementary subspace. This is an immediate consequence of Hahn–Banach theorem. Let U be the linear span of u. By Hahn–Banach, there exists a bounded linear functional Φ such that φ(u) = 1. The operator P(x) = φ(x)u satisfies P2 = P, i.e. it is a projection. Boundedness of φ implies continuity of P and therefore Ker(P) = Ran(IP) is a closed complementary subspace of U.

However, every continuous projection on a Banach space is an open mapping, by the open mapping theorem.

Read more about this topic:  Projection (linear Algebra)

Famous quotes containing the words projections and/or spaces:

    Western man represents himself, on the political or psychological stage, in a spectacular world-theater. Our personality is innately cinematic, light-charged projections flickering on the screen of Western consciousness.
    Camille Paglia (b. 1947)

    Every true man is a cause, a country, and an age; requires infinite spaces and numbers and time fully to accomplish his design;—and posterity seem to follow his steps as a train of clients.
    Ralph Waldo Emerson (1803–1882)