Projection (linear Algebra) - Canonical Forms

Canonical Forms

Any projection P = P2 on a vector space of dimension d over a field is a diagonalizable matrix, since its minimal polynomial is x2 − x, which splits into distinct linear factors. Thus there exists a basis in which P has the form

where r is the rank of P. Here Ir is the identity matrix of size r, and 0dr is the zero matrix of size dr. If the vector space is complex and equipped with an inner product, then there is an orthonormal basis in which the matrix of P is

.

where σ1 ≥ σ2 ≥ ... ≥ σk > 0. The integers k, s, m and the real numbers are uniquely determined. Note that 2k + s + m = d. The factor Im ⊕ 0s corresponds to the maximal invariant subspace on which P acts as an orthogonal projection (so that P itself is orthogonal if and only if k = 0) and the σi-blocks correspond to the oblique components.

Read more about this topic:  Projection (linear Algebra)

Famous quotes containing the words canonical and/or forms:

    If God bestowed immortality on every man then when he made him, and he made many to whom he never purposed to give his saving grace, what did his Lordship think that God gave any man immortality with purpose only to make him capable of immortal torments? It is a hard saying, and I think cannot piously be believed. I am sure it can never be proved by the canonical Scripture.
    Thomas Hobbes (1579–1688)

    All forms of beauty, like all possible phenomena, contain an element of the eternal and an element of the transitory—of the absolute and of the particular. Absolute and eternal beauty does not exist, or rather it is only an abstraction creamed from the general surface of different beauties. The particular element in each manifestation comes from the emotions: and just as we have our own particular emotions, so we have our own beauty.
    Charles Baudelaire (1821–1867)