Projection-slice Theorem - Proof in Two Dimensions

Proof in Two Dimensions

The projection-slice theorem is easily proven for the case of two dimensions. Without loss of generality, we can take the projection line to be the x-axis. There is no loss of generality because using a shifted and rotated line the law still applies. Using a shifted line (in y) gives the same projection and therefore the same 1D Fourier transform. Rotated function is the Fourier pair of the rotated Fourier transform, this completes the explanation.

If f(x, y) is a two-dimensional function, then the projection of f(x, y) onto the x axis is p(x) where

The Fourier transform of is


F(k_x,k_y)=\int_{-\infty}^\infty \int_{-\infty}^\infty
f(x,y)\,e^{-2\pi i(xk_x+yk_y)}\,dxdy.

The slice is then

s(k_x)=F(k_x,0)
=\int_{-\infty}^\infty \int_{-\infty}^\infty f(x,y)\,e^{-2\pi ixk_x}\,dxdy
=\int_{-\infty}^\infty
\left\,e^{-2\pi ixk_x} dx
=\int_{-\infty}^\infty p(x)\,e^{-2\pi ixk_x} dx

which is just the Fourier transform of p(x). The proof for higher dimensions is easily generalized from the above example.

Read more about this topic:  Projection-slice Theorem

Famous quotes containing the words proof and/or dimensions:

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)

    I was surprised by Joe’s asking me how far it was to the Moosehorn. He was pretty well acquainted with this stream, but he had noticed that I was curious about distances, and had several maps. He and Indians generally, with whom I have talked, are not able to describe dimensions or distances in our measures with any accuracy. He could tell, perhaps, at what time we should arrive, but not how far it was.
    Henry David Thoreau (1817–1862)