Definition
Formally, a profinite group is a Hausdorff, compact, and totally disconnected topological group: that is, a topological group that is also a Stone space. Equivalently, one can define a profinite group to be a topological group that is isomorphic to the inverse limit of an inverse system of discrete finite groups. In categorical terms, this is a special case of a (co)filtered limit construction.
Read more about this topic: Profinite Group
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)