Definition
Given X such that
or the (possibly infinite) Cartesian product of the topological spaces Xi, indexed by, and the canonical projections pi : X → Xi, the product topology on X is defined to be the coarsest topology (i.e. the topology with the fewest open sets) for which all the projections pi are continuous. The product topology is sometimes called the Tychonoff topology.
The open sets in the product topology are unions (finite or infinite) of sets of the form, where each Ui is open in Xi and Ui ≠ Xi only finitely many times.
The product topology on X is the topology generated by sets of the form pi−1(U), where i is in I and U is an open subset of Xi. In other words, the sets {pi−1(U)} form a subbase for the topology on X. A subset of X is open if and only if it is a (possibly infinite) union of intersections of finitely many sets of the form pi−1(U). The pi−1(U) are sometimes called open cylinders, and their intersections are cylinder sets.
We can describe a basis for the product topology using bases of the constituting spaces Xi. A basis consists of sets, where for cofinitely many (all but finitely many) i, (it's the whole space), and otherwise it's a basic open set of .
In particular, for a finite product (in particular, for the product of two topological spaces), the products of base elements of the Xi gives a basis for the product .
In general, the product of the topologies of each Xi forms a basis for what is called the box topology on X. In general, the box topology is finer than the product topology, but for finite products they coincide.
Read more about this topic: Product Topology
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)