Proof of The Product Rule
A rigorous proof of the product rule can be given using the properties of limits and the definition of the derivative as a limit of Newton's difference quotient.
If
and ƒ and g are each differentiable at the fixed number x, then
Now the difference
is the area of the big rectangle minus the area of the small rectangle in the illustration.
The region between the smaller and larger rectangle can be split into two rectangles, the sum of whose areas is
Therefore the expression in (1) is equal to
Assuming that all limits used exist, (4) is equal to
Now
This holds because f(x) remains constant as w → x.
This holds because differentiable functions are continuous (g is assumed differentiable in the statement of the product rule).
Also:
- and
because f and g are differentiable at x;
We conclude that the expression in (5) is equal to
Read more about this topic: Product Rule
Famous quotes containing the words proof of, proof, product and/or rule:
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)
“It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.”
—William Shakespeare (15641616)
“The UN is not just a product of do-gooders. It is harshly real. The day will come when men will see the UN and what it means clearly. Everything will be all rightyou know when? When people, just people, stop thinking of the United Nations as a weird Picasso abstraction, and see it as a drawing they made themselves.”
—Dag Hammarskjöld (19051961)
“In the animal kingdom, the rule is, eat or be eaten; in the human kingdom, define or be defined.”
—Thomas Szasz (b. 1920)