Probable Prime
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition also satisfied by all prime numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare.
Fermat's test for compositeness, which is based on Fermat's little theorem, works as follows: given an integer n, choose some integer a coprime to n and calculate an − 1 modulo n. If the result is different from 1, n is composite. If it is 1, n may or may not be prime; n is then called a (weak) probable prime to base a.
Read more about Probable Prime: Properties, Variations
Famous quotes containing the words probable and/or prime:
“It is the mark of an educated man to look for precision in each class of things just so far as the nature of the subject admits; it is evidently equally foolish to accept probable reasoning from a mathematician and to demand from a rhetorician demonstrative proofs.”
—Aristotle (384323 B.C.)
“My prime of youth is but a frost of cares,
My feast of joy is but a dish of pain,
My crop of corn is but a field of tares,
And all my good is but vain hope of gain:
The day is past, and yet I saw no sun,
And now I live, and now my life is done.”
—Chidiock Tichborne (15581586)