Stochastic vector redirects here. For the concept of a random vector, see Multivariate random variable.
In mathematics and statistics, a probability vector or stochastic vector is a vector with non-negative entries that add up to one.
The positions (indices) of a probability vector represent the possible outcomes of a discrete random variable, and the vector gives us the probability mass function of that random variable, which is the standard way of characterizing a discrete probability distribution.
Here are some examples of probability vectors:
Writing out the vector components of a vector as
the vector components must sum to one:
One also has the requirement that each individual component must have a probability between zero and one:
for all . These two requirements show that stochastic vectors have a geometric interpretation: A stochastic vector is a point on the "far face" of a standard orthogonal simplex. That is, a stochastic vector uniquely identifies a point on the face opposite of the orthogonal corner of the standard simplex.
Read more about Probability Vector: Some Properties of Dimensional Probability Vectors
Famous quotes containing the word probability:
“Legends of prediction are common throughout the whole Household of Man. Gods speak, spirits speak, computers speak. Oracular ambiguity or statistical probability provides loopholes, and discrepancies are expunged by Faith.”
—Ursula K. Le Guin (b. 1929)