Principle of Bivalence - Classical Logic

Classical Logic

The intended semantics of classical logic is bivalent, but this is not true of every semantics for classical logic. In Boolean-valued semantics (for classical propositional logic), the truth values are the elements of an arbitrary Boolean algebra, "true" corresponds to the maximal element of the algebra, and "false" corresponds to the minimal element. Intermediate elements of the algebra correspond to truth values other than "true" and "false". The principle of bivalence holds only when the Boolean algebra is taken to be the two-element algebra, which has no intermediate elements.

Assign Boolean semantics to classical predicate calculus requires that the model be a complete Boolean algebra because the universal quantifier maps to the infimum operation, and the existential quantifier maps to the supremum; this is called a Boolean-valued model. All finite Boolean algebras are complete.

Read more about this topic:  Principle Of Bivalence

Famous quotes containing the words classical and/or logic:

    Et in Arcadia ego.
    [I too am in Arcadia.]
    Anonymous, Anonymous.

    Tomb inscription, appearing in classical paintings by Guercino and Poussin, among others. The words probably mean that even the most ideal earthly lives are mortal. Arcadia, a mountainous region in the central Peloponnese, Greece, was the rustic abode of Pan, depicted in literature and art as a land of innocence and ease, and was the title of Sir Philip Sidney’s pastoral romance (1590)

    You can no more bridle passions with logic than you can justify them in the law courts. Passions are facts and not dogmas.
    Alexander Herzen (1812–1870)