Elementary Example
The number 3 is a primitive root modulo 7 because
Here we see that the period of 3k modulo 7 is 6. The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7. Curiously, permutations created in this way (and their circular shifts) have been shown to be Costas arrays.
Read more about this topic: Primitive Root Modulo n
Famous quotes containing the word elementary:
“If men as individuals surrender to the call of their elementary instincts, avoiding pain and seeking satisfaction only for their own selves, the result for them all taken together must be a state of insecurity, of fear, and of promiscuous misery.”
—Albert Einstein (18791955)
“When the Devil quotes Scriptures, its not, really, to deceive, but simply that the masses are so ignorant of theology that somebody has to teach them the elementary texts before he can seduce them.”
—Paul Goodman (19111972)