Primitive Root Modulo n - Definition

Definition

If n is a positive integer, the integers between 1 and n−1 which are coprime to n (or equivalently, the congruence classes coprime to n) form a group with multiplication modulo n as the operation; it is denoted by Zn× and is called the group of units modulo n or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this group is cyclic if and only if n is equal to 2, 4, pk, or 2 pk where pk is a power of an odd prime number. A generator of this cyclic group is called a primitive root modulo n, or a primitive element of Zn×.

The order of (i.e. the number of elements in) Zn× is given by Euler's totient function Euler's theorem says that aφ(n) ≡ 1 (mod n) for every a coprime to n; the lowest power of a which is congruent to 1 modulo n is called the multiplicative order of a modulo n. In particular, for a to be a primitive root modulo n, φ(n) has to be the smallest power of a which is congruent to 1 modulo n.

Read more about this topic:  Primitive Root Modulo n

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)