Primitive Recursive Function - Finitism and Consistency Results

Finitism and Consistency Results

The primitive recursive functions are closely related to mathematical finitism, and are used in several contexts in mathematical logic where a particularly constructive system is desired. Primitive recursive arithmetic (PRA), a formal axiom system for the natural numbers and the primitive recursive functions on them, is often used for this purpose.

PRA is much weaker than Peano arithmetic, which is not a finitistic system. Nevertheless, many results in number theory and in proof theory can be proved in PRA. For example, Gödel's incompleteness theorem can be formalized into PRA, giving the following theorem:

If T is a theory of arithmetic satisfying certain hypotheses, with Gödel sentence GT, then PRA proves the implication Con(T)→GT.

Similarly, many of the syntactic results in proof theory can be proved in PRA, which implies that there are primitive recursive functions that carry out the corresponding syntactic transformations of proofs.

In proof theory and set theory, there is an interest in finitistic consistency proofs, that is, consistency proofs that themselves are finitistically acceptable. Such a proof establishes that the consistency of a theory T implies the consistency of a theory S by producing a primitive recursive function that can transform any proof of an inconsistency from S into a proof of an inconsistency from T. One sufficient condition for a consistency proof to be finitistic is the ability to formalize it in PRA. For example, many consistency results in set theory that are obtained by forcing can be recast as syntactic proofs that can be formalized in PRA.

Read more about this topic:  Primitive Recursive Function

Famous quotes containing the words consistency and/or results:

    The lawyer’s truth is not Truth, but consistency or a consistent expediency.
    Henry David Thoreau (1817–1862)

    Pain itself can be pleasurable accidentally in so far as it is accompanied by wonder, as in stage-plays; or in so far as it recalls a beloved object to one’s memory, and makes one feel one’s love for the thing, whose absence gives us pain. Consequently, since love is pleasant, both pain and whatever else results from love, in so far as they remind us of our love, are pleasant.
    Thomas Aquinas (c. 1225–1274)