Primitive Polynomial (field Theory) - Properties

Properties

Because all minimal polynomials are irreducible, all primitive polynomials are also irreducible.

A primitive polynomial must have a non-zero constant term, for otherwise it will be divisible by x. Over the field of two elements, x+1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x+1.

An irreducible polynomial of degree m, F(x) over GF(p) for prime p, is a primitive polynomial if the smallest positive integer n such that F(x) divides xn - 1 is n = pm − 1.

Over GF(pm) there are exactly φ(pm − 1)/m primitive polynomials of degree m, where φ is Euler's totient function.

The roots of a primitive polynomial all have order pm − 1.

Read more about this topic:  Primitive Polynomial (field Theory)

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)