Prime Knot

In knot theory, a prime knot is a knot that is, in a certain sense, indecomposable. Specifically, it is a non-trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite. It can be a nontrivial problem to determine whether a given knot is prime or not.

A nice family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus p times in one direction and q times in the other, where p and q are coprime integers.

The simplest prime knot is the trefoil with three crossings. The trefoil is actually a (2, 3)-torus knot. The figure-eight knot, with four crossings, is the simplest non-torus knot. For any positive integer n, there are a finite number of prime knots with n crossings. The first few values (sequence A002863 in OEIS) are given in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of prime knots
with n crossings
0 0 1 1 2 3 7 21 49 165 552 2176 9988 46972 253293 1388705

Note that enantiomorphs are counted only once in this table and the following chart (i.e. a knot and its mirror image are considered equivalent).

Read more about Prime Knot:  Schubert's Theorem

Famous quotes containing the words prime and/or knot:

    Ay, look: high heaven and earth ail from the prime foundation;
    All thoughts to rive the heart are here, and all are vain:
    Horror and scorn and hate and fear and indignation—
    Oh, why did I awake? When shall I sleep again?
    —A.E. (Alfred Edward)

    Separation’s fire
    can be borne
    when there’s a knot of hope,
    but Mother,
    when my love leaves home
    and stays in the same village,
    it’s far worse than death.
    Hla Stavhana (c. 50 A.D.)