Prime Knot

In knot theory, a prime knot is a knot that is, in a certain sense, indecomposable. Specifically, it is a non-trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite. It can be a nontrivial problem to determine whether a given knot is prime or not.

A nice family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus p times in one direction and q times in the other, where p and q are coprime integers.

The simplest prime knot is the trefoil with three crossings. The trefoil is actually a (2, 3)-torus knot. The figure-eight knot, with four crossings, is the simplest non-torus knot. For any positive integer n, there are a finite number of prime knots with n crossings. The first few values (sequence A002863 in OEIS) are given in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of prime knots
with n crossings
0 0 1 1 2 3 7 21 49 165 552 2176 9988 46972 253293 1388705

Note that enantiomorphs are counted only once in this table and the following chart (i.e. a knot and its mirror image are considered equivalent).

Read more about Prime Knot:  Schubert's Theorem

Famous quotes containing the words prime and/or knot:

    Weekend planning is a prime time to apply the Deathbed Priority Test: On your deathbed, will you wish you’d spent more prime weekend hours grocery shopping or walking in the woods with your kids?
    Louise Lague (20th century)

    I love him who does not want to have too many virtues. One virtue is more virtue than two, since it is more knot on which to hang the rope that is destined to hang him.
    Friedrich Nietzsche (1844–1900)