Geometric Group Theory
A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.
Further, some properties of this graph (the coarse geometry) are intrinsic, meaning independent of choice of generators.
Read more about this topic: Presentation Of A Group
Famous quotes containing the words geometric, group and/or theory:
“New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.”
—Roland Barthes (19151980)
“Now, honestly: if a large group of ... demonstrators blocked the entrances to St. Patricks Cathedral every Sunday for years, making it impossible for worshipers to get inside the church without someone escorting them through screaming crowds, wouldnt some judge rule that those protesters could keep protesting, but behind police lines and out of the doorways?”
—Anna Quindlen (b. 1953)
“The theory of truth is a series of truisms.”
—J.L. (John Langshaw)