Presentation of A Group - Geometric Group Theory

Geometric Group Theory

A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.

Further, some properties of this graph (the coarse geometry) are intrinsic, meaning independent of choice of generators.

Read more about this topic:  Presentation Of A Group

Famous quotes containing the words geometric, group and/or theory:

    In mathematics he was greater
    Than Tycho Brahe, or Erra Pater:
    For he, by geometric scale,
    Could take the size of pots of ale;
    Resolve, by sines and tangents straight,
    If bread and butter wanted weight;
    And wisely tell what hour o’ th’ day
    The clock doth strike, by algebra.
    Samuel Butler (1612–1680)

    Laughing at someone else is an excellent way of learning how to laugh at oneself; and questioning what seem to be the absurd beliefs of another group is a good way of recognizing the potential absurdity of many of one’s own cherished beliefs.
    Gore Vidal (b. 1925)

    Thus the theory of description matters most.
    It is the theory of the word for those
    For whom the word is the making of the world,
    The buzzing world and lisping firmament.
    Wallace Stevens (1879–1955)