In number theory, a practical number or panarithmic number is a positive integer n such that all smaller positive integers can be represented as sums of distinct divisors of n. For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5=3+2, 7=6+1, 8=6+2, 9=6+3, 10=6+3+1, and 11=6+3+2.
The sequence of practical numbers (sequence A005153 in OEIS) begins
- 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, ....
Practical numbers were used by Fibonacci in his Liber Abaci (1202) in connection with the problem of representing rational numbers as Egyptian fractions. Fibonacci does not formally define practical numbers, but he gives a table of Egyptian fraction expansions for fractions with practical denominators.
The name "practical number" is due to Srinivasan (1948), who first attempted a classification of these numbers that was completed by Stewart (1954) and SierpiĆski (1955). This characterization makes it possible to determine whether a number is practical by examining its prime factorization. Any even perfect number and any power of two is also a practical number.
Practical numbers have also been shown to be analogous with prime numbers in many of their properties.
Read more about Practical Number: Characterization of Practical Numbers, Relation To Other Classes of Numbers, Practical Numbers and Egyptian Fractions, Analogies With Prime Numbers
Famous quotes containing the words practical and/or number:
“I favor the policy of economy, not because I wish to save money, but because I wish to save people. The men and women of this country who toil are the ones who bear the cost of the Government. Every dollar that we carelessly waste means that their life will be so much the more meager. Every dollar that we prudently save means that their life will be so much the more abundant. Economy is idealism in its most practical terms.”
—Calvin Coolidge (18721933)
“To finish the moment, to find the journeys end in every step of the road, to live the greatest number of good hours, is wisdom. It is not the part of men, but of fanatics, or of mathematicians, if you will, to say, that, the shortness of life considered, it is not worth caring whether for so short a duration we were sprawling in want, or sitting high. Since our office is with moments, let us husband them.”
—Ralph Waldo Emerson (18031882)