Postictal State - Treatments

Treatments

Observing neuropeptide transcription levels during and after seizures provides a window into how the brain responds to seizures. Some neuropeptides (such as galanin, thyrotropin releasing hormone (TRH), neuropeptide Y, somatostatin, and cortistatin) are believed to have anticonvulsant and neuroprotective properties. In accordance with this perceived function, mouse studies have used microarrays to show that transcription of these genes is increased many-fold following a seizure. The number of transcripts of these molecules typically peaks around 24 hours following the seizure, but can remain statistically significantly above normal levels for up to 72 hours.

Wilson observed a higher magnitude of increase in adult rats compared to immature rats, which is of note particularly because young mice have a much shorter postictal refractory period. Also, administering exogenous TRH, has been shown to improve postictal cognition in humans, as measured with neuropsychological tests. This evidence further suggests a natural role for these molecules in ending and/or recovering from seizures, and may give rise to pharmaceuticals that mitigate postictal symptoms in the future.

In support of the opioid theory of the postictal state, pretreatment of rats with morphine increased postictal symptoms and pretreatment with naloxone decreased postictal symptoms (as measured by the presence of EEG slow waves, increase in EEG spike activity, decreased memory, affective pain response, and explosive motor behavior). However, it is believed that opioid peptides serve a very useful purpose in ending the seizures, so pretreating humans with naloxone would put the patient at risk of status epilepticus. Naloxone may, however, prove a useful treatment for improving symptoms after seizures have ended. It is not known if this would also put the patient at risk of another seizure in the near future as a result of shortening the postictal refractory period.

Read more about this topic:  Postictal State