Formalism
Consider, for example, the case of a spinless particle moving in one spatial dimension (i.e. in a line). The state space for such a particle is L2(R), the Hilbert space of complex-valued and square-integrable (with respect to the Lebesgue measure) functions on the real line. The position operator, Q, is then defined by:
with domain
Since all continuous functions with compact support lie in D(Q), Q is densely defined. Q, being simply multiplication by x, is a self adjoint operator, thus satisfying the requirement of a quantum mechanical observable. Immediately from the definition we can deduce that the spectrum consists of the entire real line and that Q has purely continuous spectrum, therefore no discrete eigenvalues. The three dimensional case is defined analogously. We shall keep the one-dimensional assumption in the following discussion.
Read more about this topic: Position Operator
Famous quotes containing the word formalism:
“It is sentimentalism to assume that the teaching of life can always be fitted to the childs interests, just as it is empty formalism to force the child to parrot the formulas of adult society. Interests can be created and stimulated.”
—Jerome S. Bruner (20th century)