Position-specific Scoring Matrix - Basic PWM With Log-likelihoods

Basic PWM With Log-likelihoods

A PWM assumes independence between positions in the pattern, as it calculates scores at each position independently from the symbols at other positions. The score of a substring aligned with a PWM can be interpreted as the log-likelihood of the substring under a product multinomial distribution. Since each column defines log-likelihoods for each of the different symbols, where the sum of likelihoods in a column equals one, the PWM corresponds to a Multinomial distribution. A PWM's score is the sum of log-likelihoods, which corresponds to the product of likelihoods, meaning that the score of a PWM is then a product-multinomial distribution. The PWM scores can also be interpreted in a physical framework as the sum of binding energies for all nucleotides (symbols of the substring) aligned with the PWM.

Read more about this topic:  Position-specific Scoring Matrix

Famous quotes containing the word basic:

    There’s one basic rule you should remember about development charts that will save you countless hours of worry.... The fact that a child passes through a particular developmental stage is always more important than the age of that child when he or she does it. In the long run, it really doesn’t matter whether you learn to walk at ten months or fifteen months—as long as you learn how to walk.
    Lawrence Kutner (20th century)