In mathematics, a polynomially reflexive space is a Banach space X, on which the space of all polynomials in each degree is a reflexive space.
Given a multilinear functional Mn of degree n (that is, Mn is n-linear), we can define a polynomial p as
(that is, applying Mn on the diagonal) or any finite sum of these. If only n-linear functionals are in the sum, the polynomial is said to be n-homogeneous.
We define the space Pn as consisting of all n-homogeneous polynomials.
The P1 is identical to the dual space, and is thus reflexive for all reflexive X. This implies that reflexivity is a prerequisite for polynomial reflexivity.
Read more about Polynomially Reflexive Space: Relation To Continuity of Forms, Examples
Famous quotes containing the word space:
“Not so many years ago there there was no simpler or more intelligible notion than that of going on a journey. Travelmovement through spaceprovided the universal metaphor for change.... One of the subtle confusionsperhaps one of the secret terrorsof modern life is that we have lost this refuge. No longer do we move through space as we once did.”
—Daniel J. Boorstin (b. 1914)