Additional Structure
Many concepts of Riemannian geometry can be applied. There is only one obvious notion of parallel transport and only one natural connection. The concept of holonomy is strikingly simple in this case. The restricted holonomy group is trivial, and so there is a homomorphism from the fundamental group onto the holonomy group. It may be especially convenient to remove all singularities to obtain a space with a flat Riemannian metric and to study the holonomies there. One concepts thus arising are polyhedral Kähler manifolds, when the holonomies are contained in a group, conjugate to the unitary matrices. In this case, the holonomies also preserve a symplectic form, together with a complex structure on this polyhedral space (manifold) with the singularities removed. All the concepts such as differential form, L2 differential form, etc. are adjusted accordingly.
Read more about this topic: Polyhedral Space
Famous quotes containing the words additional and/or structure:
“The mere existence of an additional child or children in the family could signify Less. Less time alone with parents. Less attention for hurts and disappointments. Less approval for accomplishments. . . . No wonder children struggle so fiercely to be first or best. No wonder they mobilize all their energy to have more or most. Or better still, all.”
—Adele Faber (20th century)
“One theme links together these new proposals for family policythe idea that the family is exceedingly durable. Changes in structure and function and individual roles are not to be confused with the collapse of the family. Families remain more important in the lives of children than other institutions. Family ties are stronger and more vital than many of us imagine in the perennial atmosphere of crisis surrounding the subject.”
—Joseph Featherstone (20th century)