Polyhedral Combinatorics - Equalities and Inequalities

Equalities and Inequalities

The most important relation among the coefficients of the ƒ-vector of a polytope is Euler's formula Σ(−1)ifi = 0, where the terms of the sum range over the coefficients of the extended ƒ-vector. In three dimensions, moving the two 1's at the left and right ends of the extended ƒ-vector (1, v, e, f, 1) to the right hand side of the equation transforms this identity into the more familiar form ve + f = 2. From the fact that each facet of a three-dimensional polyhedron has at least three edges, it follows by double counting that 2e ≥ 3f, and using this inequality to eliminate e and f from Euler's formula leads to the further inequalities e ≤ 3v − 6 and f ≤ 2v − 4. By duality, e ≤ 3f − 6 and v ≤ 2f − 4. It follows from Steinitz's theorem that any 3-dimensional integer vector satisfying these equalities and inequalities is the ƒ-vector of a convex polyhedron.

In higher dimensions, other relations among the numbers of faces of a polytope become important as well, including the Dehn–Sommerville equations which, expressed in terms of h-vectors of simplicial polytopes, take the simple form hk = hdk for all k. The instance of these equations with k = 0 is equivalent to Euler's formula but for d > 3 the other instances of these equations are linearly independent of each other and constrain the h-vectors (and therefore also the ƒ-vectors) in additional ways.

Another important inequality on polytope face counts is given by the Upper Bound Conjecture, first proven by McMullen (1970), which states that a d-dimensional polytope with n vertices can have at most as many faces of any other dimension as a neighborly polytope with the same number of vertices:

where the asterisk means that the final term of the sum should be halved when d is even. Asymptotically, this implies that there are at most faces of all dimensions.

Even in four dimensions, the set of possible ƒ-vectors of convex polytopes does not form a convex subset of the four-dimensional integer lattice, and much remains unknown about the possible values of these vectors.

Read more about this topic:  Polyhedral Combinatorics

Famous quotes containing the word inequalities:

    In many places the road was in that condition called repaired, having just been whittled into the required semicylindrical form with the shovel and scraper, with all the softest inequalities in the middle, like a hog’s back with the bristles up.
    Henry David Thoreau (1817–1862)