Definition
where
- is a real-valued vector of nx independent variables,
- are N vectors of the same size as (often called centers) that the interpolated curve shall pass
- are the N weights of the basis functions.
- are the nx+1 weights of the polynomial.
- The linear polynomial with the weighting factors improves the interpolation close to the "boundary" and especially the extrapolation "outside" of the centers . If this is not desired, this term can also be removed (see also figure below).
The basis functions of polyharmonic splines are radial basis functions of the form:
Other values of exponent k are not useful (such as ), because a solution of the interpolation problem might no longer exist. To avoid problems at r=0 (since ln(0) = -∞), the polyharmonic splines with the natural logarithm might be implemented as:
The weights and are determined such that the function passes through given points (i=1,2,...,N) and fulfill the orthogonality conditions:
To compute the weights, a symmetric, linear system of equations has to be solved:
where
Under very mild conditions (essentially, that at least nx+1 points are not in a subspace; e.g. for nx=2 that at least 3 points are not on a straight line), the system matrix of the linear system of equations is nonsingular and therefore a unique solution of the equation system exists.
Once the weights are determined, interpolation requires to just evaluate the top most formula for the provided .
Many practical details to implement and use polyharmonic splines are given in the book of Fasshauer. In Iske polyharmonic splines are treated as special cases of other multiresolution methods in scattered data modelling.
Read more about this topic: Polyharmonic Spline
Famous quotes containing the word definition:
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)