Polar Coordinate System - Complex Numbers

Complex Numbers

Every complex number can be represented as a point in the complex plane, and can therefore be expressed by specifying either the point's Cartesian coordinates (called rectangular or Cartesian form) or the point's polar coordinates (called polar form). The complex number z can be represented in rectangular form as

where i is the imaginary unit, or can alternatively be written in polar form (via the conversion formulae given above) as

and from there as

where e is Euler's number, which are equivalent as shown by Euler's formula. (Note that this formula, like all those involving exponentials of angles, assumes that the angle θ is expressed in radians.) To convert between the rectangular and polar forms of a complex number, the conversion formulae given above can be used.

For the operations of multiplication, division, and exponentiation of complex numbers, it is generally much simpler to work with complex numbers expressed in polar form rather than rectangular form. From the laws of exponentiation:

  • Multiplication:
  • Division:
  • Exponentiation (De Moivre's formula):

Read more about this topic:  Polar Coordinate System

Famous quotes containing the words complex and/or numbers:

    Power is not an institution, and not a structure; neither is it a certain strength we are endowed with; it is the name that one attributes to a complex strategical situation in a particular society.
    Michel Foucault (1926–1984)

    The barriers of conventionality have been raised so high, and so strangely cemented by long existence, that the only hope of overthrowing them exists in the union of numbers linked together by common opinion and effort ... the united watchword of thousands would strike at the foundation of the false system and annihilate it.
    Mme. Ellen Louise Demorest 1824–1898, U.S. women’s magazine editor and woman’s club movement pioneer. Demorest’s Illustrated Monthly and Mirror of Fashions, p. 203 (January 1870)