Regression Models
If is a vector of independent variables, then the model takes the form
where and . Sometimes this is written more compactly as
where x is now an (n + 1)-dimensional vector consisting of n independent variables concatenated to some constant, usually 1. Here θ is simply a concatenated to b.
Thus, when given a Poisson regression model θ and an input vector, the predicted mean of the associated Poisson distribution is given by
If Yi are independent observations with corresponding values xi of the predictor variable, then θ can be estimated by maximum likelihood. The maximum-likelihood estimates lack a closed-form expression and must be found by numerical methods. The probability surface for maximum-likelihood Poisson regression is always convex, making Newton–Raphson or other gradient-based methods appropriate estimation techniques.
Read more about this topic: Poisson Regression
Famous quotes containing the word models:
“The parents who wish to lead a quiet life I would say: Tell your children that they are very naughtymuch naughtier than most children; point to the young people of some acquaintances as models of perfection, and impress your own children with a deep sense of their own inferiority. You carry so many more guns than they do that they cannot fight you. This is called moral influence and it will enable you to bounce them as much as you please.”
—Samuel Butler (18351902)