Poisson Algebra - Definition

Definition

A Poisson algebra is a vector space over a field K equipped with two bilinear products, ⋅ and {, }, having the following properties:

  • The product ⋅ forms an associative K-algebra.
  • The product {, }, called the Poisson bracket, forms a Lie algebra, and so it is anti-symmetric, and obeys the Jacobi identity.
  • The Poisson bracket acts as a derivation of the associative product ⋅, so that for any three elements x, y and z in the algebra, one has {x, yz} = {x, y} ⋅ z + y ⋅ {x, z}.

The last property often allows a variety of different formulations of the algebra to be given, as noted in the examples below.

Read more about this topic:  Poisson Algebra

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)