Definition
A Poisson algebra is a vector space over a field K equipped with two bilinear products, ⋅ and {, }, having the following properties:
- The product ⋅ forms an associative K-algebra.
- The product {, }, called the Poisson bracket, forms a Lie algebra, and so it is anti-symmetric, and obeys the Jacobi identity.
- The Poisson bracket acts as a derivation of the associative product ⋅, so that for any three elements x, y and z in the algebra, one has {x, y ⋅ z} = {x, y} ⋅ z + y ⋅ {x, z}.
The last property often allows a variety of different formulations of the algebra to be given, as noted in the examples below.
Read more about this topic: Poisson Algebra
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)