Point Groups in Three Dimensions - Group Structure

Group Structure

SO(3) is a subgroup of E+(3), which consists of direct isometries, i.e., isometries preserving orientation; it contains those that leave the origin fixed.

O(3) is the direct product of SO(3) and the group generated by inversion (denoted by its matrix −I):

O(3) = SO(3) × { I, −I }

Thus there is a 1-to-1 correspondence between all direct isometries and all indirect isometries, through inversion. Also there is a 1-to-1 correspondence between all groups of direct isometries H and all groups K of isometries that contain inversion:

K = H × { I, −I }
H = K ∩ SO(3)

If a group of direct isometries H has a subgroup L of index 2, then, apart from the corresponding group containing inversion there is also a corresponding group that contains indirect isometries but no inversion:

M = L ∪ ( (H \ L) × { − I } )

where isometry ( A, I ) is identified with A.

Thus M is obtained from H by inverting the isometries in H \ L. This group M is as abstract group isomorphic with H. Conversely, for all isometry groups that contain indirect isometries but no inversion we can obtain a rotation group by inverting the indirect isometries. This is clarifying when categorizing isometry groups, see below.

In 2D the cyclic group of k-fold rotations Ck is for every positive integer k a normal subgroup of O(2,R) and SO(2,R). Accordingly, in 3D, for every axis the cyclic group of k-fold rotations about that axis is a normal subgroup of the group of all rotations about that axis, and also of the group obtained by adding reflections in planes through the axis.

Read more about this topic:  Point Groups In Three Dimensions

Famous quotes containing the words group and/or structure:

    It is not God that is worshipped but the group or authority that claims to speak in His name. Sin becomes disobedience to authority not violation of integrity.
    Sarvepalli, Sir Radhakrishnan (1888–1975)

    Vashtar: So it’s finished. A structure to house one man and the greatest treasure of all time.
    Senta: And a structure that will last for all time.
    Vashtar: Only history will tell that.
    Senta: Sire, will he not be remembered?
    Vashtar: Yes, he’ll be remembered. The pyramid’ll keep his memory alive. In that he built better than he knew.
    William Faulkner (1897–1962)