Point Distribution Model - Discussion

Discussion

An eigenvector, interpreted in euclidean space, can be seen as a sequence of euclidean vectors associated to corresponding landmark and designating a compound move for the whole shape. Global nonlinear variation is usually well handled provided nonlinear variation is kept to a reasonable level. Typically, a twisting nematode worm is used as an example in the teaching of kernel PCA-based methods.

Due to the PCA properties: eigenvectors are mutually orthogonal, form a basis of the training set cloud in the shape space, and cross at the 0 in this space, which represents the mean shape. Also, PCA is a traditional way of fitting a closed ellipsoid to a Gaussian cloud of points (whatever their dimension): this suggests the concept of bounded variation.

The idea behind PDM's is that eigenvectors can be linearly combined to create an infinity of new shape instances that will 'look like' the one in the training set. The coefficients are bounded alike the values of the corresponding eigenvalues, so as to ensure the generated 2n/3n-dimensional dot will remain into the hyper-ellipsoidal allowed domain—allowable shape domain (ASD).

Read more about this topic:  Point Distribution Model

Famous quotes containing the word discussion:

    Opinions are formed in a process of open discussion and public debate, and where no opportunity for the forming of opinions exists, there may be moods—moods of the masses and moods of individuals, the latter no less fickle and unreliable than the former—but no opinion.
    Hannah Arendt (1906–1975)