Plant Evolution - Polyploidy

Polyploidy

Polyploidy is pervasive in plants and some estimates suggest that 30–80% of living plant species are polyploid, and many lineages show evidence of ancient polyploidy (paleopolyploidy) in their genomes. Huge explosions in angiosperm species diversity appear to have coincided with ancient genome duplications shared by many species. 15% of angiosperm and 31% of fern speciation events are accompanied by ploidy increase. Most polyploids display heterosis relative to their parental species, and may display novel variation or morphologies that may contribute to the processes of speciation and eco-niche exploitation. The mechanisms leading to novel variation in newly formed allopolyploids may include gene dosage effects (resulting from more numerous copies of genome content), the reunion of divergent gene regulatory hierarchies, chromosomal rearrangements, and epigenetic remodeling, all of which affect gene content and/or expression levels. Many of these rapid changes may contribute to reproductive isolation and speciation.

All eukaryotes probably have experienced a polyploidy event at some point in their evolutionary history. See paleopolyploidy. In many cases, these events can be inferred only through comparing sequenced genomes. Angiosperms have paleopolyploidy in their ancestry. Unexpected ancient genome duplications have recently been confirmed in mustard weed/thale cress (Arabidopsis thaliana) and rice (Oryza sativa).

Read more about this topic:  Plant Evolution