Evolution of Defensive Traits
The earliest land plants evolved from aquatic plants around 450 million years ago (Ma) in the Ordovician period. Many plants have adapted to iodine-deficient terrestrial environment by removing iodine from their metabolism, in fact iodine is essential only for animal cells. An important antiparasitic action is caused by the block of the transport of iodide of animal cells inhibiting sodium-iodide symporter (NIS). Many plant pesticides are glycosides (as the cardiac digitoxin) and cyanogenic glycosides which liberate cyanide, which, blocking cytochrome c oxidase and NIS, is poisonous only for a large part of parasites and herbivores and not for the plant cells in which it seems useful in seed dormancy phase. Iodide is not pesticide, but is oxidized, by vegetable peroxidase, to iodine, which is a strong oxidant, it is able to kill bacteria, fungi and protozoa. The early land plants had no vascular system and required free water for their reproduction. Vascular plants appeared later and their diversification began in the Devonian era (about 400 Ma). Their reduced dependence on water resulted from adaptations such as protective coatings to reduce evaporation from their tissues. Reproduction and dispersal of vascular plants in these dry conditions was achieved through the evolution of specialized seed structures. The diversification of flowering plants (angiosperms) during the Cretaceous period is associated with the sudden burst of speciation in insects. This diversification of insects represented a major selective force in plant evolution, and led to selection of plants that had defensive adaptations. Early insect herbivores were mandibulate and bit or chewed vegetation; but the evolution of vascular plants lead to the co-evolution of other forms of herbivory, such as sap-sucking, leaf mining, gall forming and nectar-feeding. The relative abundance of different species of plants in ecological communities including forests and grasslands may be determined in part by the level of defensive compounds in the different species. Since the cost of replacement of damaged leaves is higher in conditions where resources are scarce, it may also be that plants growing in areas where water and nutrients are scarce may invest more resources into anti-herbivore defenses.
Read more about this topic: Plant Defense Against Herbivory
Famous quotes containing the words evolution of, evolution, defensive and/or traits:
“The evolution of a highly destined society must be moral; it must run in the grooves of the celestial wheels.”
—Ralph Waldo Emerson (18031882)
“As a natural process, of the same character as the development of a tree from its seed, or of a fowl from its egg, evolution excludes creation and all other kinds of supernatural intervention.”
—Thomas Henry Huxley (182595)
“Compared to football, baseball is almost an Oriental game, minimizing individual stardom, requiring a wide range of aggressive and defensive skills, and filled with long periods of inaction and irresolution. It has no time limitations. Football, on the other hand, has immediate goals, resolution on every single play, and a lot of violenceitself a highlight. It has clearly distinguishable hierarchies: heroes and drones.”
—Jerry Mander, U.S. advertising executive, author. Four Arguments for the Elimination of Television, ch. 15, Morrow (1978)
“In the years of the Roman Republic, before the Christian era, Roman education was meant to produce those character traits that would make the ideal family man. Children were taught primarily to be good to their families. To revere gods, ones parents, and the laws of the state were the primary lessons for Roman boys. Cicero described the goal of their child rearing as self- control, combined with dutiful affection to parents, and kindliness to kindred.”
—C. John Sommerville (20th century)