Pi Helix - Standard Structure

Standard Structure

The amino acids in a standard π-helix are arranged in a right-handed helical structure. Each amino acid corresponds to a 87° turn in the helix (i.e., the helix has 4.1 residues per turn), and a translation of 1.15 Å (=0.115 nm) along the helical axis. Most importantly, the N-H group of an amino acid forms a hydrogen bond with the C=O group of the amino acid five residues earlier; this repeated i+5→i hydrogen bonding defines a π-helix. Similar structures include the 310 helix (i+3→i hydrogen bonding) and the α-helix (i+4→i hydrogen bonding).

The majority of π-helices are only 7 residues in length and do not adopt regularly repeating (φ, ψ) dihedral angles throughout the entire structure like that of α-helices or β-sheets. Because of this, textbooks that provide single dihedral values for all residues in the π-helix are misleading. Some generalizations can be made, however. When the first and last residue pairs are excluded, dihedral angles exist such that the ψ dihedral angle of one residue and the φ dihedral angle of the next residue sum to roughly -125°. The first and last residue pairs sum to -95° and -105°, respectively. For comparison, the sum of the dihedral angles for a 310 helix is roughly -75°, whereas that for the α-helix is roughly -105°. Proline is often seen immediately following the end of π-helices. The general formula for the rotation angle Ω per residue of any polypeptide helix with trans isomers is given by the equation


3 \cos \Omega = 1 - 4 \cos^{2} \left

Read more about this topic:  Pi Helix

Famous quotes containing the words standard and/or structure:

    Neither I nor anyone else knows what a standard is. We all recognize a dishonorable act, but have no idea what honor is.
    Anton Pavlovich Chekhov (1860–1904)

    In the extent and proper structure of the Union, therefore, we behold a republican remedy for the diseases most incident to republican government.
    James Madison (1751–1836)