Physical Geodesy - The Normal Potential

The Normal Potential

To a rough approximation, the Earth is a sphere, or to a much better approximation, an ellipsoid. We can similarly approximate the gravity field of the Earth by a spherically symmetric field:


W \approx \frac{GM}{R}

of which the equipotential surfaces—the surfaces of constant potential value—are concentric spheres.

It is more accurate to approximate the geopotential by a field that has the Earth reference ellipsoid as one of its equipotential surfaces, however. The most recent Earth reference ellipsoid is GRS80, or Geodetic Reference System 1980, which the Global Positioning system uses as its reference. Its geometric parameters are: semi-major axis a = 6378137.0 m, and flattening f = 1/298.257222101.

A geopotential field is constructed, being the sum of a gravitational potential and the known centrifugal potential, that has the GRS80 reference ellipsoid as one of its equipotential surfaces. If we also require that the enclosed mass is equal to the known mass of the Earth (including atmosphere) GM = 3986005 × 108 m3·s−2, we obtain for the potential at the reference ellipsoid:


U_0=62636860.850 \ \textrm m^2 \, \textrm s^{-2}

Obviously, this value depends on the assumption that the potential goes asymptotically to zero at infinity, as is common in physics. For practical purposes it makes more sense to choose the zero point of normal gravity to be that of the reference ellipsoid, and refer the potentials of other points to this.

Read more about this topic:  Physical Geodesy

Famous quotes containing the words normal and/or potential:

    When a man says that he is Jesus or Napoleon, or that the Martians are after him, or claims something else that seems outrageous to common sense, he is labeled psychotic and locked up in a madhouse. Freedom of speech is only for normal people.
    Thomas Szasz (b. 1920)

    Silence is as full of potential wisdom and wit as the unhewn marble of great sculpture. The silent bear no witness against themselves.
    Aldous Huxley (1894–1963)