Photosynthesis - Discovery

Discovery

Although some of the steps in photosynthesis are still not completely understood, the overall photosynthetic equation has been known since the 19th century.

Jan van Helmont began the research of the process in the mid-17th century when he carefully measured the mass of the soil used by a plant and the mass of the plant as it grew. After noticing that the soil mass changed very little, he hypothesized that the mass of the growing plant must come from the water, the only substance he added to the potted plant. His hypothesis was partially accurate — much of the gained mass also comes from carbon dioxide as well as water. However, this was a signaling point to the idea that the bulk of a plant's biomass comes from the inputs of photosynthesis, not the soil itself.

Joseph Priestley, a chemist and minister, discovered that, when he isolated a volume of air under an inverted jar, and burned a candle in it, the candle would burn out very quickly, much before it ran out of wax. He further discovered that a mouse could similarly "injure" air. He then showed that the air that had been "injured" by the candle and the mouse could be restored by a plant.

In 1778, Jan Ingenhousz, court physician to the Austrian Empress, repeated Priestley's experiments. He discovered that it was the influence of sunlight on the plant that could cause it to revive a mouse in a matter of hours.

In 1796, Jean Senebier, a Swiss pastor, botanist, and naturalist, demonstrated that green plants consume carbon dioxide and release oxygen under the influence of light. Soon afterward, Nicolas-Théodore de Saussure showed that the increase in mass of the plant as it grows could not be due only to uptake of CO2 but also to the incorporation of water. Thus, the basic reaction by which photosynthesis is used to produce food (such as glucose) was outlined.

Cornelis Van Niel made key discoveries explaining the chemistry of photosynthesis. By studying purple sulfur bacteria and green bacteria he was the first scientist to demonstrate that photosynthesis is a light-dependent redox reaction, in which hydrogen reduces carbon dioxide.

Robert Emerson discovered two light reactions by testing plant productivity using different wavelengths of light. With the red alone, the light reactions were suppressed. When blue and red were combined, the output was much more substantial. Thus, there were two photosystems, one absorbing up to 600 nm wavelengths, the other up to 700 nm. The former is known as PSII, the latter is PSI. PSI contains only chlorophyll a, PSII contains primarily chlorophyll a with most of the available chlorophyll b, among other pigment. These include phycobilins, which are the red and blue pigments of red and blue algae respectively, and fucoxanthol for brown algae and diatoms. The process is most productive when absorption of quanta are equal in both the PSII and PSI, assuring that input energy from the antenna complex is divided between the PSI and PSII system, which in turn powers the photochemistry.

Robert Hill thought that a complex of reactions consisting of an intermediate to cytochrome b6 (now a plastoquinone), another is from cytochrome f to a step in the carbohydrate-generating mechanisms. These are linked by plastoquinone, which does require energy to reduce cytochrome f for it is a sufficient reductant. Further experiments to prove that the oxygen developed during the photosynthesis of green plants came from water, were performed by Hill in 1937 and 1939. He showed that isolated chloroplasts give off oxygen in the presence of unnatural reducing agents like iron oxalate, ferricyanide or benzoquinone after exposure to light. The Hill reaction is as follows:

2 H2O + 2 A + (light, chloroplasts) → 2 AH2 + O2

where A is the electron acceptor. Therefore, in light, the electron acceptor is reduced and oxygen is evolved.

Samuel Ruben and Martin Kamen used radioactive isotopes to determine that the oxygen liberated in photosynthesis came from the water.

Melvin Calvin and Andrew Benson, along with James Bassham, elucidated the path of carbon assimilation (the photosynthetic carbon reduction cycle) in plants. The carbon reduction cycle is known as the Calvin cycle, which ignores the contribution of Bassham and Benson. Many scientists refer to the cycle as the Calvin-Benson Cycle, Benson-Calvin, and some even call it the Calvin-Benson-Bassham (or CBB) Cycle.

Nobel Prize-winning scientist Rudolph A. Marcus was able to discover the function and significance of the electron transport chain.

Otto Heinrich Warburg and Dean Burk discovered the I-quantum photosynthesis reaction that splits the CO2, activated by the respiration.

Louis N.M. Duysens and Jan Amesz discovered that chlorophyll a will absorb one light, oxidize cytochrome f, chlorophyll a (and other pigments) will absorb another light, but will reduce this same oxidized cytochrome, stating the two light reactions are in series.

Read more about this topic:  Photosynthesis

Famous quotes containing the word discovery:

    One of the laudable by-products of the Freudian quackery is the discovery that lying, in most cases, is involuntary and inevitable—that the liar can no more avoid it than he can avoid blinking his eyes when a light flashes or jumping when a bomb goes off behind him.
    —H.L. (Henry Lewis)

    The discovery of the North Pole is one of those realities which could not be avoided. It is the wages which human perseverance pays itself when it thinks that something is taking too long. The world needed a discoverer of the North Pole, and in all areas of social activity, merit was less important here than opportunity.
    Karl Kraus (1874–1936)

    However backwards the world has been in former ages in the discovery of such points as GOD never meant us to know,—we have been more successful in our own days:Mthousands can trace out now the impressions of this divine intercourse in themselves, from the first moment they received it, and with such distinct intelligence of its progress and workings, as to require no evidence of its truth.
    Laurence Sterne (1713–1768)