Photolithography - Light Sources

Light Sources

Historically, photolithography has used ultraviolet light from gas-discharge lamps using mercury, sometimes in combination with noble gases such as xenon. These lamps produce light across a broad spectrum with several strong peaks in the ultraviolet range. This spectrum is filtered to select a single spectral line. From the early 1960s through the mid-1980s, Hg lamps had been used in lithography for their spectral lines at 436 nm ("g-line"), 405 nm ("h-line") and 365 nm ("i-line"). However, with the semiconductor industry’s need for both higher resolution (to produce denser and faster chips) and higher throughput (for lower costs), the lamp-based lithography tools were no longer able to meet the industry’s requirements.

This challenge was overcome when in a pioneering development in 1982, excimer laser lithography was proposed and demonstrated at I.B.M. by Kanti Jain, and now excimer laser lithography machines (steppers and scanners) are the primary tools used worldwide in microelectronics production. With phenomenal advances made in tool technology in the last two decades, it is the semiconductor industry view that excimer laser lithography has been a crucial factor in the continued advance of Moore’s Law, enabling minimum features sizes in chip manufacturing to shrink from 0.5 micrometer in 1990 to 45 nanometers and below in 2010. This trend is expected to continue into this decade for even denser chips, with minimum features approaching 10 nanometers. From an even broader scientific and technological perspective, in the 50-year history of the laser since its first demonstration in 1960, the invention and development of excimer laser lithography has been highlighted as one of the major milestones.

The commonly used deep ultraviolet excimer lasers in lithography systems are the Krypton fluoride laser at 248-nm wavelength and the argon fluoride laser at 193-nm wavelength. The primary manufacturers of excimer laser light sources in the 1980s were Lambda Physik (now part of Coherent, Inc.) and Lumonics, but since the mid-1990s Cymer Inc. has become the dominant supplier of excimer laser sources to the lithography equipment manufacturers. Generally, an excimer laser is designed to operate with a specific gas mixture; therefore, changing wavelength is not a trivial matter, as the method of generating the new wavelength is completely different, and the absorption characteristics of materials change. For example, air begins to absorb significantly around the 193 nm wavelength; moving to sub-193 nm wavelengths would require installing vacuum pump and purge equipment on the lithography tools (a significant challenge). Furthermore, insulating materials such as silicon dioxide (SiO2), when exposed to photons with energy greater than the band gap, release free electrons and holes which subsequently cause adverse charging.

Optical lithography has been extended to feature sizes below 50 nm using the 193 nm ArF excimer laser and liquid immersion techniques. Also termed immersion lithography, this enables the use of optics with numerical apertures exceeding 1.0. The liquid used is typically ultra-pure, deionised water, which provides for a refractive index above that of the usual air gap between the lens and the wafer surface. The water is continually circulated to eliminate thermally-induced distortions. Water will only allow NA's of up to ~1.4, but materials with higher refractive indices will allow the effective NA to be increased further.

Experimental tools using the 157 nm wavelength from the F2 excimer laser in a manner similar to current exposure systems have been built. These were once targeted to succeed 193 nm lithography at the 65 nm feature size node but have now all but been eliminated by the introduction of immersion lithography. This was due to persistent technical problems with the 157 nm technology and economic considerations that provided strong incentives for the continued use of 193 nm excimer laser lithography technology. High-index immersion lithography is the newest extension of 193 nm lithography to be considered. In 2006, features less than 30 nm were demonstrated by IBM using this technique.

An option, especially if and when wavelengths continue to decrease to extreme UV or X-ray, is the free-electron laser (or one might say xaser for an X-ray device). These can produce high quality beams at arbitrary wavelengths.

Read more about this topic:  Photolithography

Famous quotes containing the words light and/or sources:

    The splendor falls on castle walls
    And snowy summits old in story;
    The long light shakes across the lakes,
    And the wild cataract leaps in glory.
    Blow, bugle, blow, set the wild echoes flying,
    Blow, bugle; answer, echoes, dying, dying, dying.
    Alfred Tennyson (1809–1892)

    My profession brought me in contact with various minds. Earnest, serious discussion on the condition of woman enlivened my business room; failures of banks, no dividends from railroads, defalcations of all kinds, public and private, widows and orphans and unmarried women beggared by the dishonesty, or the mismanagement of men, were fruitful sources of conversation; confidence in man as a protector was evidently losing ground, and women were beginning to see that they must protect themselves.
    Harriot K. Hunt (1805–1875)