The philosophy of mathematics is the branch of philosophy that studies the philosophical assumptions, foundations, and implications of mathematics. The aim of the philosophy of mathematics is to provide an account of the nature and methodology of mathematics and to understand the place of mathematics in people's lives. The logical and structural nature of mathematics itself makes this study both broad and unique among its philosophical counterparts.
The terms philosophy of mathematics and mathematical philosophy are frequently used as synonyms. The latter, however, may be used to refer to several other areas of study. One refers to a project of formalising a philosophical subject matter, say, aesthetics, ethics, logic, metaphysics, or theology, in a purportedly more exact and rigorous form, as for example the labours of Scholastic theologians, or the systematic aims of Leibniz and Spinoza. Another refers to the working philosophy of an individual practitioner or a like-minded community of practicing mathematicians. Additionally, some understand the term "mathematical philosophy" to be an allusion to the approach taken by Bertrand Russell in his books The Principles of Mathematics and Introduction to Mathematical Philosophy.
Read more about Philosophy Of Mathematics: Recurrent Themes, History, Aesthetics
Famous quotes containing the words philosophy of and/or philosophy:
“Frankly, I do not like the idea of conversations to define the term unconditional surrender. ... The German people can have dinned into their ears what I said in my Christmas Eve speechin effect, that we have no thought of destroying the German people and that we want them to live through the generations like other European peoples on condition, of course, that they get rid of their present philosophy of conquest.”
—Franklin D. Roosevelt (18821945)
“The very hope of experimental philosophy, its expectation of constructing the sciences into a true philosophy of nature, is based on induction, or, if you please, the a priori presumption, that physical causation is universal; that the constitution of nature is written in its actual manifestations, and needs only to be deciphered by experimental and inductive research; that it is not a latent invisible writing, to be brought out by the magic of mental anticipation or metaphysical mediation.”
—Chauncey Wright (18301875)