**Thermodynamics and Statistical Mechanics**

In thermodynamics and statistical mechanics contexts, the term phase space has two meanings: It is used in the same sense as in classical mechanics. If a thermodynamical system consists of *N* particles, then a point in the *6N*-dimensional phase space describes the dynamical state of every particle in that system, as each particle is associated with three position variables and three momentum variables. In this sense, a point in phase space is said to be a microstate of the system. *N* is typically on the order of Avogadro's number, thus describing the system at a microscopic level is often impractical. This leads us to the use of phase space in a different sense.

The phase space can refer to the space that is parametrized by the *macroscopic* states of the system, such as pressure, temperature, etc. For instance, one can view the pressure-volume diagram or entropy-temperature diagrams as describing part of this phase space. A point in this phase space is correspondingly called a macrostate. There may easily be more than one microstate with the same macrostate. For example, for a fixed temperature, the system could have many dynamic configurations at the microscopic level. When used in this sense, a phase is a region of phase space where the system in question is in, for example, the liquid phase, or solid phase, etc.

Since there are many more microstates than macrostates, the phase space in the first sense is usually a manifold of much larger dimensions than the second sense. Clearly, many more parameters are required to register every detail of the system down to the molecular or atomic scale than to simply specify, say, the temperature or the pressure of the system.

Read more about this topic: Phase Space

### Famous quotes containing the word mechanics:

“the moderate Aristotelian city

Of darning and the Eight-Fifteen, where Euclid’s geometry

And Newton’s *mechanics* would account for our experience,

And the kitchen table exists because I scrub it.”

—W.H. (Wystan Hugh)