Generalization To Higher Dimensions
A. Coley, R. Milson, V. Pravda and A. Pravdová (2004) developed a generalization of algebraic classification to arbitrary spacetime dimension . Their approach uses a null frame basis approach, that is a frame basis containing two null vectors and, along with spacelike vectors. Frame basis components of the Weyl tensor are classified by their transformation properties under local Lorentz boosts. If particular Weyl components vanish, then and/or are said to be Weyl-Aligned Null Directions (WANDs). In four dimensions, is a WAND if and only if it is a principal null direction in the sense defined above. This approach gives a natural higher-dimensional extension of each of the various algebraic types II,D etc. defined above.
An alternative, but inequivalent, generalization was previously defined by de Smet (2002), based on a spinorial approach. However, the de Smet is restricted to 5 dimensions only.
Read more about this topic: Petrov Classification
Famous quotes containing the words higher and/or dimensions:
“For my part, I have no hesitation in saying that although the American woman never leaves her domestic sphere and is in some respects very dependent within it, nowhere does she enjoy a higher station . . . if anyone asks me what I think the chief cause of the extraordinary prosperity and growing power of this nation, I should answer that it is due to the superiority of their woman.”
—Alexis de Tocqueville (18051859)
“It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?or animals?even forests or oceans or rocks?in this world of ours or, even, in worlds or dimensions elsewhere.”
—Doris Lessing (b. 1919)