Petrov Classification - Generalization To Higher Dimensions

Generalization To Higher Dimensions

A. Coley, R. Milson, V. Pravda and A. Pravdová (2004) developed a generalization of algebraic classification to arbitrary spacetime dimension . Their approach uses a null frame basis approach, that is a frame basis containing two null vectors and, along with spacelike vectors. Frame basis components of the Weyl tensor are classified by their transformation properties under local Lorentz boosts. If particular Weyl components vanish, then and/or are said to be Weyl-Aligned Null Directions (WANDs). In four dimensions, is a WAND if and only if it is a principal null direction in the sense defined above. This approach gives a natural higher-dimensional extension of each of the various algebraic types II,D etc. defined above.

An alternative, but inequivalent, generalization was previously defined by de Smet (2002), based on a spinorial approach. However, the de Smet is restricted to 5 dimensions only.

Read more about this topic:  Petrov Classification

Famous quotes containing the words higher and/or dimensions:

    And so the seasons went rolling on into summer, as one rambles into higher and higher grass.
    Henry David Thoreau (1817–1862)

    I was surprised by Joe’s asking me how far it was to the Moosehorn. He was pretty well acquainted with this stream, but he had noticed that I was curious about distances, and had several maps. He and Indians generally, with whom I have talked, are not able to describe dimensions or distances in our measures with any accuracy. He could tell, perhaps, at what time we should arrive, but not how far it was.
    Henry David Thoreau (1817–1862)